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Abstract

This study focuses on non-linear seismic response of a concrete gravity dam subjected to translational and rotational
correlated components of ground motions including dam-reservoir interaction. For this purpose rotational components of
ground motion is generated using Hong Non Lee improved method based on corresponding available translational
components. The 2D seismic behavior of the dam concrete is taken into account using nonlinear fracture mechanics based on
the smeared- crack concepts and the dam-reservoir system are modeled using Lagrangian-Lagrangian approach in finite
element method. Based on presented formulation, Pine Flat concrete gravity dam is analyzed for different cases and results
show that the rotational component of ground motion can increase or decrease the maximum horizontal and vertical
displacements of dam crest. These results are dependent on the frequency of dam-reservoir system and predominant
frequencies of translational and rotational components of ground motion.

Keywords: Rotational component of ground motion, Nonlinear analysis, Concrete gravity dam, Smeared crack, Dam-

Reservoir interaction, Lagrangian-Lagrangian method.

1. Introduction

To complete seismic evaluation of concrete dams using
finite element method, some considerations are very
important. The effect of fluid-structure interaction,
nonlinear behavior of dam material and the earthquake
loading are some of these considerations. In the dynamic
analysis of concrete dams, the interaction effects of the
impounded water can be represented by any of three basic
approaches. The simplest one is the added mass attached
to the dam [1]. Another approach describing the dam-
water interaction is the Eulerian approach. In this
approach, variables are displacements in the structure and
pressures or velocity potentia in the fluid. Since these
variables in the fluid and structure are different in this
approach, a special-purpose computer program for the
solution of coupled systems is required [2,3]. The
Lagrangian approach is a third way to represent the fluid-
structure interaction. In this approach, behavior of fluid
and structure are expressed in terms of displacements and
some constrains and Penalty functions are suggested to
eliminate the zero-energy modes [4, 5]. This approach is
also used by many researchers to dynamic analysis of
dams[6-9].
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Seismic fracture analysis of concrete gravity dams has
long been atopic of research in dam engineering for linear
and nonlinear fracture mechanics. In regard to the
application of nonlinear fracture mechanics to the cracking
study of mass concrete, there are two basic procedures of
modeling cracks commonly used in numerical analysis,
namely the fictitious crack model (FCM) presented by
Hillerborg et a. [10] and the crack band model (CBM) by
Bazant et al. [11-13], both of which take the effects of
strain softening into account by different assumptions.
Many other researchers [14-19] is aso have studied the
seismic fracture of concrete gravity dams using severa
crack models, failure criteria, different fracture modes and
congtitutive behavior of concrete but any of these
researches don't have the same result for the path of crack
propagation with the observed prototype behavior.

The kinematics of any point in a medium is idealy
expressed in terms of three trandational and three
rotational components. Newmark [20] was perhaps the
first to establish a relationship between the torsiona and
translational components using classical elasticity theory
based on constant wave velocity. This method was used by
several authors [21-23]. Other researchers [24-27] have
used elastic wave propagation theory in the soil medium
together with the classical elasticity theory. During the
past decades, in spite of the fact that numerous studies
have continued to show the significance of the rotational
components in strong motion excitation on the structural
response, the progress in developing and deploying strong
motion instruments capable of recording the rotational
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components of earthquake waves has continued to be slow
[28-30].

Generally, in seismic analysis of concrete dams and
other structures, it is assumed that the system is subjected
to trandationa components of ground motion and the
rotational components of ground motion are implicitly
assumed to be insignificant. Recently it has been shown
that the rotational components of ground motion can be
noticeable effects on the dynamic response of structures
and many structural failures and the damage caused by
earthquakes can be linked to mentioned effects [31-38]. It
has shown that during an earthquake, even symmetric
structures can be expected to undergo substantial torsional
excitation and in the case of stiff building structures, the
torsional components can increase the displacements up to
four times [35]. However these effects on the nonlinear
dynamic response of concrete gravity dams are not
considered in previous researches.

In this paper, a numerical scheme based on the crack
band theory is presented to study the nonlinear fracture
behavior of concrete gravity dams under translational and
corresponding rotational components of ground motion
due to earthquakes. The foundation is assumed to be rigid
and its interaction with dam and reservoir are not taken in
to account. The fluid is also assumed to be isotropic,
inviscid and irrotational. First, the rotational components
of six earthquakes are obtained using trandational
available components based on Hong Non Lee method
[26] and then the nonlinear response and cracking path of
Pine Flat concrete gravity dam are compared with and
without considering the rotational components.

2. Lagrangian Formulation of Fluid-Structure
Interaction System

In this paper considering linear-elastic, inviscid, and
irrotational fluid, the equations of motion of the dam-
reservoir system are determined using the Lagrangian
approach. For a two-dimensional fluid element, the stress-
strain relationships can be written as:

p C, O |[e
= @

B, 0 Cypjlw
where P, C), and &€  are pressures, bulk modulus

and volumetric strains of the fluid, respectively. The
rotation and constraint parameters are included in the
stress—strain equation of the fluid, since the irrotationality
of the fluid is considered by penalty function methods
[4,5]. InEq. (1), w isthe rotation about the axis normal to

the plane, P, is the rotational stress and C,, is the

constraint parameter [5, 39].

The equations of motion for a system can be derived
directly from Lagrange's equations. These equations are a
direct result of Hamilton's variation principle under the
specific condition that the energy and work terms can be
expressed in terms of the generalized coordinates and of
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their time derivatives and variations [39].
Based on Lagrangian approach, the equation of motion
can be presented as:

MU +CU+K, Uy =Ry 2

inwhich C,, K, , U,and U, are the fluid damping

matrix, stiffness matrix including the free surface stiffness,
the nodal acceleration and displacement vectors of finite

element mesh, respectively. R . is a time-varying nodal
force vector defined as M ,a,when the earthquake

ground acceleration is applied to the fluid system in which
a, is ground acceleration vector. In the formation of the

fluid element matrices in Lagrangian approach, reduced
integration orders were utilized to decrease the fluid
element stiffness.

The equations of motion of the fluid system, Eq. (2),
have a similar form to those of the structure system. To
obtain the coupled equations of the fluid-structure system,
a determination of the interface condition is required.
Because of the fluid is assumed to be inviscid, only
displacement in normal direction to the interface is
continuous at the interface of the system. This assumption
has been not caused any observed approximation in dam
response [39].

Assuming that positive face is the structure and
negative face is the fluid, the boundary condition at the
fluid-structure interface is

U =U" ©)

where U, is the norma component of the interface
displacement [18]. This equation is satisfied using the

interface elements with stiffness matrix K , .

Using the mentioned equations, the equations of
motion of the coupled system subjected to ground motion
including damping effects are given by:

MU, +CU,+KU,=R, (4

inwhich M_, C, and K are the mass, damping and

stiffness matrices for the coupled system. U _, UC and UC
are the vectors of the displacement, velocity, acceleration
of the coupled system and R, is the time-varying nodal
forces vector of ground acceleration.

In this research, the governing equation for dam-
reservoir system is solved by Bosak method and for
nonlinear analysis, the displacements and forces at joints

of finite element mesh are selected for convergence criteria
in Newton-Raphson scheme.
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3. Numerical Model for Fracture Analysis of Mass
Concrete

In smeared crack models, the fracture process is
initiated when the maximum principal stress in a material
point exceeds its tensile strength. In the crack band theory,
when an opening cracks (Mode |) initiates, the fracture
process of mass concrete can be depicted by progressive
micro-cracking of the material in a crack band. The crack
propagation is mainly controlled by the shape of the
tensile-softening diagram and the energy absorbed in the
crack band of the softening zone per unit cross-section

area is defined as the fracture energy G, , which is a

characteristic parameter of the material.

In this research the orthogonal multi fixed smeared
crack are used to study the 2D seismic fracture behavior of
concrete gravity dams considering opening and shearing
modes of crack (Mode | and Il). For this purpose four
steps are considered in calculations including: crack
initiation criterion or pre-cracking, the post cracking

L=
£ £,

@

behavior, crack modeling and the closing and reopening of
crack.

The pre-cracking behavior of concrete is assumed to be
linear and elastic. To consider the nonlinearity of concrete
behavior in elastic cases as shown in Fig.(1-a) and also the
effect of two axial stresses, the crack initiation criterion
using the tensile strain energy can be written as[14]:

ok ®

o, 0,—VO,

This equation can be shown as Fig. (1-b) where o,
and o, ae the principle stresses in an element,

o, =1.3f, inwhich f, isthe uniaxia tensile strength of

t
the concrete [14] and v is the poison ratio. Thus herein,
when the maximum average principal stresses in Guess
pints of an element exceeds the Egs. (5), the first crack is
assumed to form in the element perpendicular to the
maximum principle stress according to Fig. (2).

G

RS

(b)

Fig. 1 (a) nonlinear elastic behavior of concrete, (b) Crack initiation criterion [14]

¥

LF 2

Crack plane

Fig. 2 Crack element and local coordinates

After crack initiation the concrete behaves as a strain-
softening material, for which the tensile stress normal to
the crack decreases with increasing strain. The specific
softening congtitutive relation can be obtained from
uniaxial tensile tests of a concrete specimen with

deformation control. For the complete stress-strain relation
asshowninFig.3, £ ,E_and E, aretheinitial modulus,
the current secant modulus and the tangential modulus,
respectively. e, is the total strain in local coordinates
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which is decomposed in two strains, the crack and the
concrete strains( e, e ). The fracture energy G, canbe
evaluated from [13]:

G, =h[S;de, 6)

where /. represents the crack band width of the

fracture process zone given by the characteristic length of
the material; for concrete it is suggested [18] that

h, =3d with d denoting the maximum aggregate size in
the concrete.

|
|
|
|
Fig. 3 Complete stress-strain curve in tension [18]

In finite element analysis, when the size of the element
which models the width of the crack band is greater than

h. , the softening constitutive curve needs to be modified

according to Bezant's energy criterion [13] so that the
fracture energy remains the same. Thus, the results remain
independent of the element size.

As shown in Fig. (4-a), in dynamic case analyses, the
initial modulus and the tensile strength are increased using
the coefficients 1.25 and 1.5, respectively [14]. The shape
of softening curve also can be changed in the form of
multi-linear as shown in Fig. (4-b), to consider size effect
of structure and more redistic model to match the
experimental results[18].

InFig. (4):
D, - a,+(-a,)atl a f,zhc) _a+(1- a,)af D, (@
’ a, 2G, a, ’

where «; and «, is obtained using the experimental
1 1
resultg[17]. If the a =0 or thea, =1, then D e D'/

and the linear softening behavior is resulted.
The total stress-strain relation for a concrete element
undergoing cracking is given by:
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{Sﬂ” SSUV T"S}T:[D]ns {en & yns}T (8)

where subscripts n and s represent the local coordinates
in according with the crack directions shown in Fig.(2) and

[D]m represents the material property matrix for the same
local coordinate orientation and is given by [18]:

Dll DlZ 0
[D]ns =|Dy Dy O ©)
0 0 D,
where:
Dy = 7”12E Dy = 7”22E 1D12:D21*%vD33:EG
1-v i, 1-v i, 1-vinn, (10)
E: ﬁ1ﬁ2
(l’ﬂ1)ﬁ2+ﬂ1

E, are the ratio
E

In Ean.(9), 5, = iﬁﬂ and 5, =

between secant and initial modulus in n and s directions,
respectively. '81 and ﬂz are also the shear retention factor

representing the extent of aggregate interlock on the crack
surfaces and for multi fixed crack model are obtained
using [18]:

crl

e
o= Bre -2
en-
o an
e Y

n

,Bz :ﬂmax (1_ )

where e”f is the tota crack strain, B is the
max

maximum shear retention factor for the cracked element
and e, e"? arethe crack strains for crack number 1 and

n

2, respectively.
The stress-strain  matrix [D]m is transferred to
Cartesian coordinates using [18]:

[pl, =[rT [P, [7] (12)

During the process of cyclic loading, the cracks may
close and reopen both periodically and progressively.
Based on the results of cyclic tensile tests given in Ref.
[17], the simplified constitutive model accounting for
crack closing and reopening shown in Fig. (5) is adopted.
The element remains linear with modulus of E before
cracking and also subsequently after the crack closes.
Whenever the stress normal to the crack surface becomes
positive (tensile) again, the crack will reopen with
continuously decreasing secant modulus £ until a

macro-crack formsat straine, = e,/ .
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Fig. 4 (a) static and dynamic softening curve [14], (b) the stress-strain multi-linear behavior after cracking [18]
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Fig. 5 Closing- reopening behavior of concrete material [16,17]

4. Rocking Component of Ground Motion

Idedlly, the kinematics of any point in the medium is
three trandational and three rotational components where
the three rotational components of ground motion include
the two rocking components and one torsional component.
The three trandational components are easily measurable
by standard techniques, whereas the rotational components
are not directly accessible. In this research the rocking
component of earthquake ground motion are generated
using classical elasticity and elastic wave propagation
theories considering frequency dependent wave velocities.
Then these correlated components are applied properly to
the finite element mesh of concrete gravity dam.

4.1. Generation the rocking component of ground motion

In order to 2D seismic analysis of gravity dams, two
tranglational components of ground motion in x and z
directions and their related rocking component are used.
These motion components are shown in Fig. (6) by

symbols u# ,w and ¢gy. In addition for SV wave

incidence, the amplitudes of incident wave and reflected P
and SV. waves are shown in this figure by A, A, and

A, and their angles with vertical axes are shown by 00‘

91 , 92 respectively.

€y
S (b
eﬂf Bkl "
f
rw
¢gr ‘2D u . X
‘90 91 pe) A.S'P
AS _——/ B
Ags

Fig. 6 Propagation of SV wave on the ground surface

The rocking component using classical elasticity theory
can be written as [24]:

1 0w ou
g, = 5 (a - g) (13)

Using elastic wave propagation theory and the
potential functions of wave motion with frequency w and
by imposing the free shear stress condition at the ground
surface, the Egs.(13) can be rewritten as [36-38]:
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io % w ;
¢gy = F w= (1@ 2 )(F) (Rw € gw)
X X (14)

Z+0,)i

IRV
—Q;Rd( )

where C_ = f/sing, isthe frequency dependent wave
velocity and g isthe propagation velocity of shear wave.
Egs. (14) show that the rocking component has the

w

amplitude equal to — R whereR  is the amplitude of
verticalk component of ground motion. In addition the
phase difference between rocking and vertical ground

motionisz /2.
Using improved approach developed by [26], by
introducing (x =sing,) and based on Snell's law, Egs.

(15) and (16) are used to obtain the angle of incident wave.

2x/1- K2x?

G:W’ 90 <9C (15)
2.2
G- —2_’;7 “(11‘1;;) O > 0c (16)
i —

where G =w/u for rocking component in x-z plane
due to SV wave; K =a/f and 6. =arcsin($/«) is the

incident critical angle. « is the propagation velocity of P
wave.

Fig. 7 illustrates the flowchart of cdculation the
rotational components of ground motion using trandation
components.

The time history of translational components of ground
motion accelerograms

v

Determination of the frequency amplitude spectrum and
phase of each translational components using FFT

v

Calculation of the vertical and horizontal amplitudes ratios
for each frequency G = w/u

v

Calculation of the incident wave angles for each frequency
solving Egs. (18) and (19)
7= sinﬁ’n
v
Calculation of the rotational amplitude spectrum and phase
using Egs. (17)

(%“*9,,)1'

@
e, —(?Rw)e

v

Determination of the time historv of rotational components
using Inverse Fast Fourier Transform IFFT

Fig. 7 Flowchart for calculation of rotational components of
ground motion

L. Kalani Sarokolayi, B. Navayi Neya, J. Vaseghi Amiri

4.2. Applied force due to ground rotation

In Egs. (4), to obtain the nodal forces vector due to
trandational and rotational ground acceleration, R, the

rigid body kinematics theory [41] is used. In this theory

the general motion of rigid body can be divided into two

translational and rotational motions as shown in Fig. (8).
In this case:

R, =M {U, 1)} (17)
where:

. i, (1) + 4, ()z -8, (1)°x
U,(); = " . 18
{ o )} W, (1) = (¢, (O)x +4,,(1)°2) wo

in Eqs.(4) i, (¢) and w,(¢) are the time-varying of

tranglational acceleration, q;gy (¢) and ¢gy (t) arethetime-

varying of rotational acceleration and velocity respectively
and x, z are coordinates of each nodes[25].

Fig. 8 The general motion of rigid body

5. Numerical Result

Based on proposed formulation for calculation of dam-
reservoir response under rotational and trandlational
components of ground motion, a computer code have been
prepared in Fortran 91 by authors.

For this purpose the tallest monolith of the Pine Flat
Dam is selected for evaluation of the results Geometrical
characteristics and finite element model of Pine Flat dam-
reservoir system are shown in Fig. 9 in which maximum
water level is 116.2 m and the reservoir's length is
considered three times as long as the water level and the
Somerfield boundary condition is used for radiation
condition in truncated far end of reservoir [8,42].

The material properties adopted in the analysis are
shown in Table 1 [14,15]. In this table the Bulk constant,
K, is related to elasticity modulus, FE, using

E

K="

31-2v)
damping is assumed with the damping coefficient
calibrated to provide ¢ = 0.05for the fundamental mode

for same materials Stiffness proportional
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has been used to obtain other results. For multi-linear
softening curve, the shape of curve are defined using

a,=0.3, a, =0.2 [18].

of theinitial linear structure and ¢ = 0.01 for the reservoir

[7]. The hilinear softening curve of Ahmadi [14] has been
employed to verify the nonlinear response of dam-
reservoir system. Then multi-linear softening curve of [18]

0.78 H=116.2 m
1
Truncated
I Far-End
IFENEERR | of reservior
NN EEEER
ST
NN EEREN
I EEEEEN
ST
ST |
S
ST '| hd

% m L=3H
Fig. 9 Dimensions of the tallest monolith of Pine Flat dam and it finite element mesh

Table 1 Materia properties of Pine Flat dam

. Bulk Constant ~ Tensile strength £, . S . . Fractureenergy  Unit Weight
Material K(MPa) (MPa) Poisson'sratio  Damping ratio G (N/m) DN/
Concrete 15556 2.93 0.2 0.05 150 24.5

Water 2000 - - 0.01 - 10
In this paper trandationa components of six components where are obtained using mentioned equations

earthquakes are used to generate their corresponding
rotational components. Characteristics of trandlational
components of these earthquakes and their rotational

in part 4 are presented in Tables 2 and 3, respectively. The
rotational Fourier amplitude spectrums are also shown in
Fig. 10.

Table 2 Characteristics of earthquakes

Ea(rggtlé?ke Station I\/(Is?gtt;c;e D:Esit);z?:net(ialm) Field Component PGA (9) Vilh:gty
T WE e omx e L UE
?387%2%35’ Pa[fgr;na 6.61 11.86 near Vse7r2\‘/3v""' g’:ggg 2016.1
(o372 Schoo 736 ® far ‘S o 354
(Iggg/sééﬁg) Bosrooyeh  7.35 7466 far Lo\égirttbfj?jn L 9 e
“hsedooy amLs 1% 37.83 o Noisoun o015 5534
(%oworiy  Dam 68 179 new S e 6291
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Table 3 Characteristics of rotational components for six earthquakes ground motion.

.. . Predominate Frequency (Hz)
2 dl - - -
Earthquake Prex(mrad | 57) P (mrad [ 5) Horizontal Comp. Vertical Comp. Rocking Comp.
Imperia Valley -6.17 -0.030 2.25 4.45 1.65
San Fernando -57.00 0.370 4.78 4.25 11.20
Taft 15.60 -0.043 4.40 2.30 1.30
Tabas, Iran -108.50 0.376 7.40 0.90 0.88
Chi Chi Taiwan 11.50 0.054 0.70 0.75 0.75
Northridge 447.40 -1.220 0.78 10.25 1.10
i —— 25
~ 0 2 L " 20 |
= Els'-‘i'l‘ 1 3 st
g 3 1 HLIN L , & 10
E/ EU.S' | -‘\Ill i WAl | 5t
= | I | 5 N |
=] 0t : o
o 10 ¢ g 7
g o | ' s t
o 9 B g |
:3 g 5 [l ‘- i IE X
2 E *)! " *1”'“!“"' W & N i Al
— - v |”‘il p ,\1 IH‘ || " \ ,\ I\ = ””J l
ERLUN, !”* ATV = y..,ww Vil M‘JH ‘it ’M‘M b
o 9 o 100
g [ oo 8o |
o & 6t | . | l E bU ‘
y [+ I |' | | | | b= N 1 | | 1 !4
H’.:'-”'[L .-.-|I|&'_I|{'|1 ‘ ‘-.6 40, L d LT,
. i L .!"-'_” AWl .."'[‘ L| ,.1.lu "".'f«.',n'_",.L,-‘.".'.'i Z 20 .., (1) WL iy Wi
oL = ‘-_I:_' : ~ Potell 44 el 0 L i . A 1 A 1 h l
0 s 10 15 20 25 0 s 10 15 20 25

Fig. 10 Rocking Fourier amplitude spectrums for six earthquakes

5.1. Verification

To evaluate the Hong Non Lee improved method, the
rotational components of the San Fernando earthquake is
obtained using Hong Non Lee improved method [26].
Using this method, it is found that the peak values of
rocking and torsional accelerations for shear wave velocity
of 300 m/s are 0.3833 rad/s?, -0.2545 rad/s”, respectively.

400

:

These values are calculated in [27] equal to -0.3725 rad/s?,
-0.2480 rad/s’, respectively where the differences between
these results are less than 3 percent. This difference is due
to different ratio of @/ C_ whereis considered constant in

[27] and frequency dependent in this research. The time
histories of rocking component for San Fernando
earthquake which are generated by [27] and present work
areshownin Fig. 11.

Acceleration
(mrad/s?)
o

-200

@

:

10 15

400
200

20

Time

25 30 35 40 45

(b)

Acceleration
mrad/st

|
(4]
8 o

—400 -

To evaluate the seismic response of dam-reservoir
system under translational components of ground motion
and study the finite element formulation for dynamic
analysis of concrete gravity dam, some finite element
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Fig: 11 Rocking' Component 'of San Ferna;ndo Earthqu:ake, @ preﬂ'ent work, (b)'[27]

analysis of system are done and the results are compared
with analytical resultsor others works. For example the
linear response of Pine Flat dam due to S69E component
of Taft earthquake which is obtained in present work is
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compared with result by [42]. These results are shown in

Fig. 12 which have very good agreements.

Vertical displacement

7]

L¥)

G 2 2

S) 0.2 1.12

gu 0 — 7 R ()
S -2 T 2

o

22 2

o

g g 0 iAWy o)
= 2 . 5 1.06

S 0 5 10 15 7 0 5 10 15

Horizontal displacement

Fig. 12 Thelinear response of Pine Flat dam crest without reservoir due to S69E component of Taft earthquake, (a): present work,
(b):[40,42]

5.2. Modal analysis

To study the behavior of dam subjected to trandational
and rotational components of earthquake, the modal
analyses of dam-reservoir system with three levels of
water have been done and the natural frequencies for two
modes of them are listed in Table 4.

Table 4 The natural frequencies of dam-reservoir system (Hz)

System Dam Damé& 1/3 Damé& 2/3 Damé&
Full res. Full res. Full res.
Model  3.189 2.812 2.611 2.538
Mode 2 6.630 3.906 3512 3.226
Mode3  8.813 5.625 4.335 3.387
Mode4  11.591 6.634 4.459 4,082
Mode5 18.138 8.532 4,749 4,529
7.5
5

5.3. Seismic fracture analysis of pine flat dam

In this paper the fracture analysis of Pine Flat dam
under the trandational and rotational components of six
earthquakes is conducted employing the numerical model
described above. The time step used in the anaysis is
0.0025 s is employed to solve the equation of motion. The
responses of dam due to two translational components
named "2C" and due to two translational components and
their rotational correlated component named "2C+R" are
analyzed and the normalized response of dam is calculated
using the ratio between maximum response of dam due to
(2C+R) and (2C).

Fig. 13 to 16 show the linear and nonlinear response of
Pine Flat dam crest subjected to (2C) and (2C+R) of Taft
earthquake.

—2c
- 2C+R

10 12

2.5

ux(cm)
o

-2 5

-5

-7.5 !

—2C
~—2CH+R

6
t(s)
(b)

12

Fig. 13 The response of Pine Flat dam without reservoir due to (2C.) and (2C+R) of Taft earthquake, @) Linear response, b) Nonlinear
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7.5

ux(cm)

i ¢
W

2508 b

ux(cm)

-5 A
1% 2 4 6 8 10 12
t(s)
(b)
Fig. 14 The response of Pine Flat dam with 1/3 full reservoir dueto (2C.) and (2C+R) of Taft earthquake, a) Linear response, b) Nonlinear
response
T5 . : . ;
—2C
51 - 2C+R
2.5 : ;

ux(cm)
@]

ux(cm)

-5
T 2 a 6 8 10 12
t(s)
(b) _
Fig. 15 The response of Pine Flat dam with 2/3 full reservoir dueto (2C.) and (2C+R) of Taft earthquake, a) Linear response, b) Nonlinear
response
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--2C+R

ux(cm)

-5
) 2 4 6 8 10 12
t(s)
(b)
Fig. 16 The response of Pine Flat dam with full reservoir dueto (2C.) and (2C+R) of Taft earthquake, @) Linear response, b) Nonlinear
response
Fig. 17 also shows the nonlinear response of empty horizontal and vertical displacements subjected to (2C)
dam subjected to Chi Chi Taiwan earthquake . As shown and (2C+R) and their normalized response for six
in thisfigure, responsesto (2C) and (2C+R) excitations are mentioned earthquakes are presented in Table 5.
very close. Other nonlinear results such as maximum
7.5 T T T
—2C
5. ---2C+R
2.5- i
5
S o ‘ A
5
-2.51 8
5l 1
% 5 10 15 20 25 30 35 40
t(s)

Fig. 17 The nonlinear response of Pine Flat dam without reservoir due to (2C.) and (2C+R) of Chi Chi Taiwan earthquake

Table 5 Nonlinear response of Pine Flat dam crest due to (2 Comp.) and (3 Comp.) of Ground motions

Maximum Horizontal Normalized Maximum Vertica Normalized
System Earthquake displacement(cm) Horizontal displacement(cm) Vertica
2C 2C+R di Sp| acement 2C 2C+R di Sp| acement
Imperia Valley 0.729 1.444 1.981 0.213 0.427 2.005
Dam San Fernando 14.855 12.384 0.832 4,989 3.626 0.727
Taft 4,201 3.197 0.761 1.222 0.755 0.617
Tabas, Iran 0.787 5.805 7.371 0.329 1.526 4,628
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Chi Chi Taiwan 2214 2247 1015 0662 0719 1,086
Northridge 4284 16855 3.934 8113 5965 0.735
Imperial Valley 0.558 1,011 1813 0167 0272 1627
San Fernando 15970  18.650 1.168 5140 5180 1,008
Dam + Taft 3037 3323 1.061 0850 0890 1.047
Rgg'i'or Tabas, Iran 0.747 7.046 9.430 0319 1630 5.105
Chi Chi Taiwan 2517 2380 0.945 0737 0723 0.981
Northridge 5514 5976 1.084 1967 2422 1.231
Imperial Valley 0507 0551 1.085 0151  0.148 0.982
SanFemando  aleda 505, : Faledat o, :

D+ t=3.472 t=3.472
i Taft 2300 2500 1.088 0720 0740 1.023
Roservior Tabas, Iran 0.903 6.840 7575 0351 1310 3732
Chi Chi Taiwan 2002 3104 1.037 0697 0746 1.070
Northridge 25800 25990 1.007 6270 6550 1.044
Imperial Valley 0607 0785 1.204 0187 0205 1,095
Do+ San Fernando 3161 3455 1,003 2304 2939 1276
g Taft 3040 4950 1.257 2070 2260 1,001
Reservior Tabas, Iran 0711 8528 11.990 0355 12200 34,390
Chi Chi Taiwan 3002 3145 1,017 0805 0931 1.155
Northridge 18800  20.616 1.001 2308  7.779 3.370

As shown in Figs. 13-17, the rotational component of
ground motion can change both the quality and quantity of
dam response and the maximum response of dam can
increase or decrease when the rotational components of
ground motion is considered. This effect is dependent on
the natural frequency of dam and predominate frequency
of rocking component. In addition, comparison of linear
and nonlinear response of Pine Flat dam with different
water level in reservoir are not same due to the post-
cracking behavior of concrete material and changing of the
material elasticity modulus after cracking.

As shown in Table 5, the maximum normalized
response of horizontal and vertical displacements of dam
crest for different level of water in reservoir under Tabas
earthquake, while for minimum normalized response of
displacements under other earthquakes there are not any

@

regulation. In this table, the failure is occurred only due to
translational components (2C) of San Fernando earthquake
for dam with 2/3 full reservoir at time of t=3.472. In this
case for (2C+R) analyses, when the rotational component
is considered the failure will not occur and this
phenomenon mean that the rotation component of ground
motion decreases the response of dam. .

In Fig. 18, the crack propagation of dam without
reservoir due to (2C) and (2C+R) of Taft earthquake are
compared schematically. As shown in this figure, the
rotational components change the cracking pattern and the
crack zone in dam body is more limited, while for dam
with full reservoir due to (2C) and (2C+R) under Tabas
earthquake, the rotational component of ground motion
increases the dam cracking zone (Fig. (19)).

(b)

Fig.18 The Crack propagation of Pine Flat dam without reservoir subjected to Taft earthquake, (8): dueto (2C), (b): dueto (2C+R)
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(b)

Fig.19 The Crack propagation of Pine Flat dam with full reservoir subjected to Taft earthquake, (a): due to (2C), (b): due to (2C+R)

6. Conclusions

In this study, nonlinear seismic response of a concrete
gravity dam subjected to two translational components
(2C) and two trandlational and their rotational correlated
components (2C+R) are investigated. Pine Flat concrete
gravity dam is chosen for analyses and dam-reservoir
interaction is modeled using finite element method and
Lagrangian-Lagrangian approach. Nonlinear behavior of
dam concrete is idealized using nonlinear fracture
mechanics based on smeared crack approach and the
following conclusions are made:

1- The normalized response of dam is dependent on
the peak rotational rate (PRR), frequency content of
rotational components of ground motions, their power
spectrum, and the natural frequency of dam-reservoir.
Depend on the mentioned parameters, the rotation
component of ground motion can increase or decrease the
response of the dam. In this study the Northridge and
Tabas earthquakes have a high PRR and also their
rotational Fourier amplitude and power spectrum close to
the dam natural frequency are higher than other
earthquakes. Therefore these two earthquakes have more
effects on the response of dam.

2- The rotational effects on dam response can be
neglected when the Fourier amplitudes of translational
components of ground motion close to the dam natural
frequency are greater than rotational Fourier amplitude.

3- Depends on natural frequencies of dam-reservoir
and rotational components of ground motion, the quality
and quantity of dam response can be changed basically.

4-  Rotation component of earthquakes can decrease
or increase the cracked zone of concrete gravity dams
depends on frequency content of ground motion and natural
frequency of damrreservoir system. In addition, the
rotational component of earthquake can change the
beginning point of crack in dam and consequently cracked
zone.

5 The normalized response of dam crest in
nonlinear analysis is different from those in linear ones.
These differences in nonlinear analysis are due to the post-
cracking behavior of concrete material and changing of the
material elasticity modulus after cracking.

6- The effect of rotational components on dam
response can be changed basically when the water
elevation is higher in comparison with lower water
elevations. In this case, the quality and quantity of dam
response are also changed considerably.

The time histories of rocking components that are
obtained in this study using improved approach have a
good agreement with the other works.
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