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Abstract 

This study focuses on non-linear seismic response of a concrete gravity dam subjected to translational and rotational 
correlated components of ground motions including dam-reservoir interaction. For this purpose rotational components of 
ground motion is generated using Hong Non Lee improved method based on corresponding available translational 
components. The 2D seismic behavior of the dam concrete is taken into account using nonlinear fracture mechanics based on 
the smeared- crack concepts and the dam-reservoir system are modeled using Lagrangian-Lagrangian approach in finite 
element method. Based on presented formulation, Pine Flat concrete gravity dam is analyzed for different cases and results 
show that the rotational component of ground motion can increase or decrease the maximum horizontal and vertical 
displacements of dam crest. These results are dependent on the frequency of dam-reservoir system and predominant 
frequencies of translational and rotational components of ground motion. 

Keywords: Rotational component of ground motion, Nonlinear analysis, Concrete gravity dam, Smeared crack, Dam-
Reservoir interaction, Lagrangian-Lagrangian method. 

 
1. Introduction 

To complete seismic evaluation of concrete dams using 
finite element method, some considerations are very 
important. The effect of fluid-structure interaction, 
nonlinear behavior of dam material and the earthquake 
loading are some of these considerations. In the dynamic 
analysis of concrete dams, the interaction effects of the 
impounded water can be represented by any of three basic 
approaches. The simplest one is the added mass attached 
to the dam [1]. Another approach describing the dam-
water interaction is the Eulerian approach. In this 
approach, variables are displacements in the structure and 
pressures or velocity potential in the fluid. Since these 
variables in the fluid and structure are different in this 
approach, a special-purpose computer program for the 
solution of coupled systems is required [2,3]. The 
Lagrangian approach is a third way to represent the fluid-
structure interaction. In this approach, behavior of fluid 
and structure are expressed in terms of displacements and 
some constrains and Penalty functions are suggested to 
eliminate the zero-energy modes [4, 5]. This approach is 
also used by many researchers to dynamic analysis of 
dams [6-9]. 
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Seismic fracture analysis of concrete gravity dams has 
long been a topic of research in dam engineering for linear 
and nonlinear fracture mechanics. In regard to the 
application of nonlinear fracture mechanics to the cracking 
study of mass concrete, there are two basic procedures of 
modeling cracks commonly used in numerical analysis, 
namely the fictitious crack model (FCM) presented by 
Hillerborg et al. [10] and the crack band model (CBM) by 
Bazant et al. [11-13], both of which take the effects of 
strain softening into account by different assumptions. 
Many other researchers [14-19] is also have studied the 
seismic fracture of concrete gravity dams using several 
crack models, failure criteria, different fracture modes and 
constitutive behavior of concrete but any of these 
researches don't have the same result for the path of crack 
propagation with the observed prototype behavior. 

The kinematics of any point in a medium is ideally 
expressed in terms of three translational and three 
rotational components. Newmark [20] was perhaps the 
first to establish a relationship between the torsional and 
translational components using classical elasticity theory 
based on constant wave velocity. This method was used by 
several authors [21-23]. Other researchers [24-27] have 
used elastic wave propagation theory in the soil medium 
together with the classical elasticity theory. During the 
past decades, in spite of the fact that numerous studies 
have continued to show the significance of the rotational 
components in strong motion excitation on the structural 
response, the progress in developing and deploying strong 
motion instruments capable of recording the rotational 
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components of earthquake waves has continued to be slow 
[28-30].  

Generally, in seismic analysis of concrete dams and 
other structures, it is assumed that the system is subjected 
to translational components of ground motion and the 
rotational components of ground motion are implicitly 
assumed to be insignificant. Recently it has been shown 
that the rotational components of ground motion can be 
noticeable effects on the dynamic response of structures 
and many structural failures and the damage caused by 
earthquakes can be linked to mentioned effects [31-38]. It 
has shown that during an earthquake, even symmetric 
structures can be expected to undergo substantial torsional 
excitation and in the case of stiff building structures, the 
torsional components can increase the displacements up to 
four times [35]. However these effects on the nonlinear 
dynamic response of concrete gravity dams are not 
considered in previous researches.  

In this paper, a numerical scheme based on the crack 
band theory is presented to study the nonlinear fracture 
behavior of concrete gravity dams under translational and 
corresponding rotational components of ground motion 
due to earthquakes. The foundation is assumed to be rigid 
and its interaction with dam and reservoir are not taken in 
to account. The fluid is also assumed to be isotropic, 
inviscid and irrotational. First, the rotational components 
of six earthquakes are obtained using translational 
available components based on Hong Non Lee method 
[26] and then the nonlinear response and cracking path of 
Pine Flat concrete gravity dam are compared with and 
without considering the rotational components. 

2. Lagrangian Formulation of Fluid-Structure 
Interaction System 

In this paper considering linear-elastic, inviscid, and 
irrotational fluid, the equations of motion of the dam-
reservoir system are determined using the Lagrangian 
approach. For a two-dimensional fluid element, the stress-
strain relationships can be written as: 
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where P , 11C  and 
v

  are pressures, bulk modulus 

and volumetric strains of the fluid, respectively. The 
rotation and constraint parameters are included in the 
stress–strain equation of the fluid, since the irrotationality 
of the fluid is considered by penalty function methods 
[4,5]. In Eq. (1), w  is the rotation about the axis normal to 

the plane, wP  is the rotational stress and 22C  is the 

constraint parameter [5, 39]. 
The equations of motion for a system can be derived 

directly from Lagrange's equations. These equations are a 
direct result of Hamilton's variation principle under the 
specific condition that the energy and work terms can be 
expressed in terms of the generalized coordinates and of 

their time derivatives and variations [39]. 
Based on Lagrangian approach, the equation of motion 

can be presented as: 
 

fffffff RUKUCUM  *  (2) 

 

in which fC , *
fK , fU and fU are the fluid damping 

matrix, stiffness matrix including the free surface stiffness, 
the nodal acceleration and displacement vectors of finite 

element mesh, respectively. fR  is a time-varying nodal 

force vector defined as f gM a when the earthquake 

ground acceleration is applied to the fluid system in which 

ga  is ground acceleration vector. In the formation of the 

fluid element matrices in Lagrangian approach, reduced 
integration orders were utilized to decrease the fluid 
element stiffness. 

The equations of motion of the fluid system, Eq. (2), 
have a similar form to those of the structure system. To 
obtain the coupled equations of the fluid-structure system, 
a determination of the interface condition is required. 
Because of the fluid is assumed to be inviscid, only 
displacement in normal direction to the interface is 
continuous at the interface of the system. This assumption 
has been not caused any observed approximation in dam 
response [39]. 

Assuming that positive face is the structure and 
negative face is the fluid, the boundary condition at the 
fluid-structure interface is 

 

n nU U   (3) 

 
where nU  is the normal component of the interface 

displacement [18]. This equation is satisfied using the 
interface elements with stiffness matrix intK . 

 Using the mentioned equations, the equations of 
motion of the coupled system subjected to ground motion 
including damping effects are given by: 

 

c c c c c c cM U C U K U R     (4) 

 
in which cM , cC  and cK  are the mass, damping and 

stiffness matrices for the coupled system. cU , cU and cU  

are the vectors of the displacement, velocity, acceleration 
of the coupled system and cR  is the time-varying nodal 

forces vector of ground acceleration. 
In this research, the governing equation for dam-

reservoir system is solved by Bosak method and for 
nonlinear analysis, the displacements and forces at joints 
of finite element mesh are selected for convergence criteria 
in Newton-Raphson scheme. 
  



18 International Journal of Civil Engineering, Vol. 13, No. 1, Transaction A: Civil Engineering, March 2015 
 

3. Numerical Model for Fracture Analysis of Mass 
Concrete 

In smeared crack models, the fracture process is 
initiated when the maximum principal stress in a material 
point exceeds its tensile strength. In the crack band theory, 
when an opening cracks (Mode I) initiates, the fracture 
process of mass concrete can be depicted by progressive 
micro-cracking of the material in a crack band. The crack 
propagation is mainly controlled by the shape of the 
tensile-softening diagram and the energy absorbed in the 
crack band of the softening zone per unit cross-section 

area is defined as the fracture energy fG  , which is a 

characteristic parameter of the material.  
In this research the orthogonal multi fixed smeared 

crack are used to study the 2D seismic fracture behavior of 
concrete gravity dams considering opening and shearing 
modes of crack (Mode I and II). For this purpose four 
steps are considered in calculations including: crack 
initiation criterion or pre-cracking, the post cracking 

behavior, crack modeling and the closing and reopening of 
crack.  

The pre-cracking behavior of concrete is assumed to be 
linear and elastic. To consider the nonlinearity of concrete 
behavior in elastic cases as shown in Fig.(1-a) and also the 
effect of two axial stresses, the crack initiation criterion 
using the tensile strain energy can be written as [14]: 
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This equation can be shown as Fig. (1-b) where 1  

and 2  are the principle stresses in an element, 

1.3i tf   in which tf  is the uniaxial tensile strength of 

the concrete [14] and   is the poison ratio. Thus herein, 
when the maximum average principal stresses in Guess 
pints of an element exceeds the Eqs. (5), the first crack is 
assumed to form in the element perpendicular to the 
maximum principle stress according to Fig. (2). 

 

(a)   (b) 
Fig. 1 (a) nonlinear elastic behavior of concrete, (b) Crack initiation criterion [14] 

 

 
Fig. 2 Crack element and local coordinates 

 
After crack initiation the concrete behaves as a strain-

softening material, for which the tensile stress normal to 
the crack decreases with increasing strain. The specific 
softening constitutive relation can be obtained from 
uniaxial tensile tests of a concrete specimen with 

deformation control. For the complete stress-strain relation 
as shown in Fig. 3, E , sE  and tE are the initial modulus, 

the current secant modulus and the tangential modulus, 
respectively. ne  is the total strain in local coordinates 
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which is decomposed in two strains, the crack and the 

concrete strains( ,cr coe e ). The fracture energy fG  can be 

evaluated from [13]: 
 

cr
f c n nG h S de   (6) 

where ch  represents the crack band width of the 

fracture process zone given by the characteristic length of 
the material; for concrete it is suggested [18] that 

3ch d  with d denoting the maximum aggregate size in 

the concrete. 
 

Fig. 3 Complete stress-strain curve in tension [18] 
 
In finite element analysis, when the size of the element 

which models the width of the crack band is greater than 

ch , the softening constitutive curve needs to be modified 

according to Bezant’s energy criterion [13] so that the 
fracture energy remains the same. Thus, the results remain 
independent of the element size. 

As shown in Fig. (4-a), in dynamic case analyses, the 
initial modulus and the tensile strength are increased using 
the coefficients 1.25 and 1.5, respectively [14]. The shape 
of softening curve also can be changed in the form of 
multi-linear as shown in Fig. (4-b), to consider size effect 
of structure and more realistic model to match the 
experimental results [18]. 

In Fig. (4): 
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where 1  and 2 is obtained using the experimental 

results[17]. If the 0
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and the linear softening behavior is resulted.

 
 

The total stress-strain relation for a concrete element 
undergoing cracking is given by:  

 

     T Tcr cr
n s ns n s nsns

S S D e e   (8) 

where subscripts n and s represent the local coordinates 
in according with the crack directions shown in Fig.(2) and 

 ns
D represents the material property matrix for the same 

local coordinate orientation and is given by [18]: 
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In Eqn.(9), 
1

snE

E
 

 
and

 2
ssE

E
  are the ratio 

between secant and initial modulus in n and s directions, 
respectively. 

1


 
and 

2
 are also the shear retention factor 

representing the extent of aggregate interlock on the crack 
surfaces and for multi fixed crack model are obtained 
using [18]: 
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where f

ne
 

is the total crack strain,
 max


 
is the 

maximum
 
shear retention factor for the cracked element 

and 1cr
ne , 2cr

ne  are the crack strains for crack number 1 and 

2, respectively. 

The stress-strain matrix  ns
D is transferred to 

Cartesian coordinates using [18]:  
 

       TDTD ns
T

xy   (12) 

 
During the process of cyclic loading, the cracks may 

close and reopen both periodically and progressively. 
Based on the results of cyclic tensile tests given in Ref. 
[17], the simplified constitutive model accounting for 
crack closing and reopening shown in Fig. (5) is adopted. 
The element remains linear with modulus of E  before 
cracking and also subsequently after the crack closes. 
Whenever the stress normal to the crack surface becomes 
positive (tensile) again, the crack will reopen with 
continuously decreasing secant modulus 

sE  until a 

macro-crack forms at strain f
n ne e . 
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(a) (b) 

Fig. 4 (a) static and dynamic softening curve [14], (b) the stress-strain multi-linear behavior after cracking [18] 
 

 
Fig. 5 Closing- reopening behavior of concrete material [16,17] 

 

4. Rocking Component of Ground Motion 

Ideally, the kinematics of any point in the medium is 
three translational and three rotational components where 
the three rotational components of ground motion include 
the two rocking components and one torsional component. 
The three translational components are easily measurable 
by standard techniques, whereas the rotational components 
are not directly accessible. In this research the rocking 
component of earthquake ground motion are generated 
using classical elasticity and elastic wave propagation 
theories considering frequency dependent wave velocities. 
Then these correlated components are applied properly to 
the finite element mesh of concrete gravity dam. 

4.1. Generation the rocking component of ground motion 

In order to 2D seismic analysis of gravity dams, two 
translational components of ground motion in x and z 
directions and their related rocking component are used. 
These motion components are shown in Fig. (6) by 

symbols u , w  and gy . In addition for SV wave 

incidence, the amplitudes of incident wave and reflected P 
and SV. waves are shown in this figure by SA , SPA  and 

SSA  and their angles with vertical axes are shown by 
0
 ،

1
 , 

2
  respectively.  

 

 
Fig. 6 Propagation of SV wave on the ground surface 

 
The rocking component using classical elasticity theory 

can be written as [24]: 
 

1
( )

2gy

w u

x z
  

 
 

 (13) 

 
Using elastic wave propagation theory and the 

potential functions of wave motion with frequency  and 
by imposing the free shear stress condition at the ground 
surface, the Eqs.(13) can be rewritten as [36-38]: 
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where 

0sin/ xC  is the frequency dependent wave 

velocity and   
is the propagation velocity of shear wave. 

Eqs. (14) show that the rocking component has the 

amplitude equal to w
x

R
C


 where wR  is the amplitude of 

vertical component of ground motion. In addition the 
phase difference between rocking and vertical ground 
motion is / 2 . 

Using improved approach developed by [26], by 
introducing )sin( 0x  and based on Snell’s law, Eqs. 

(15) and (16) are used to obtain the angle of incident wave. 
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where uwG /  for rocking component in x-z plane 

due to SV wave;  /K  and )/arcsin(  C  
is the 

incident critical angle.   
is the propagation velocity of P 

wave. 
Fig. 7 illustrates the flowchart of calculation the 

rotational components of ground motion using translation 
components. 

 

 
Fig. 7 Flowchart for calculation of rotational components of 

ground motion 

4.2. Applied force due to ground rotation 

In Eqs. (4), to obtain the nodal forces vector due to 
translational and rotational ground acceleration, cR , the 

rigid body kinematics theory [41] is used. In this theory 
the general motion of rigid body can be divided into two 
translational and rotational motions as shown in Fig. (8). 

In this case: 
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in Eqs.(4) ( )gu t  and ( )gw t  are the time-varying of 

translational acceleration, ( )gy t and ( )gy t  are the time-

varying of rotational acceleration and velocity respectively 
and x, z are coordinates of each nodes [25]. 

 

 
Fig. 8 The general motion of rigid body 

5. Numerical Result 

Based on proposed formulation for calculation of dam- 
reservoir response under rotational and translational 
components of ground motion, a computer code have been 
prepared in Fortran 91 by authors. 

For this purpose the tallest monolith of the Pine Flat 
Dam is selected for evaluation of the results Geometrical 
characteristics and finite element model of Pine Flat dam-
reservoir system are shown in Fig. 9 in which maximum 
water level is 116.2 m and the reservoir’s length is 
considered three times as long as the water level and the 
Somerfield boundary condition is used for radiation 
condition in truncated far end of reservoir [8,42]. 

The material properties adopted in the analysis are 
shown in Table 1 [14,15]. In this table the Bulk constant,

 K , is related to elasticity modulus, E , using 

)21(3 


E
K for same materials Stiffness proportional 

damping is assumed with the damping coefficient 
calibrated to provide 0.05  for the fundamental mode 
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of the initial linear structure and 01.0  for the reservoir 

[7]. The bilinear softening curve of Ahmadi [14] has been 
employed to verify the nonlinear response of dam-
reservoir system. Then multi-linear softening curve of [18] 

has been used to obtain other results. For multi-linear 
softening curve, the shape of curve are defined using

3.01  , 2.02   [18]. 

 
 

 
Fig. 9 Dimensions of the tallest monolith of Pine Flat dam and it finite element mesh 

 
Table 1 Material properties of Pine Flat dam 

Material 
Bulk Constant 

K(MPa) 
Tensile strength ft 

(MPa) 
Poisson's ratio Damping ratio 

Fracture energy 
G (N/m) 

Unit Weight 
γ(kN/m3) 

Concrete 15556 2.93 0.2 0.05 150 24.5 
Water 2000 - - 0.01 - 10 
 
 
In this paper translational components of six 

earthquakes are used to generate their corresponding 
rotational components. Characteristics of translational 
components of these earthquakes and their rotational 

components where are obtained using mentioned equations 
in part 4 are presented in Tables 2 and 3, respectively. The 
rotational Fourier amplitude spectrums are also shown in 
Fig. 10. 

 
 

Table 2 Characteristics of earthquakes 
Earthquake 

(Date) 
Station 

Magnitude 
(Rishter) 

Epicentral 
Distance(km) 

Field Component PGA (g) 
Shear 

Velocity 
Imperial Valley 

(1951/01/24) 
117 El 
Centro 

5.60 28.24 far 
Up-Down 

North-South 
0.013 
0.029 

213.4 

San Fernando 
(1971/02/09) 

Pacoma 
Dam 

6.61 11.86 near 
Vertical 
S74W 

0.709 
1.075 

2016.1 

Taft 
(1952/7/21) 

Lincoln 
School 

7.36 35 far 
Vertical 

S69E 
0.155 
0.179 

385.4 

Tabas, Iran 
(1978/09/16) 

Boshrooyeh 7.35 74.66 far 
Vertical 

Longitudinal 
0.069 
0.109 

338.6 

Chi Chi Taiwan 
(1999/09/20) 

CWB99999
17ALS 

7.62 37.83 far 
Vertical 

North-South 
0.074 
0.175 

553.4 

Northridge 
(1994/01/17) 

000LA 
Dam 

6.69 11.79 near 
Vertical 

Longitudinal 
0.424 
0.511 

629.1 
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Table 3 Characteristics of rotational components for six earthquakes ground motion. 

Earthquake 2
max ( / )mrad s  )/(max smrad  Predominate Frequency (Hz) 

Horizontal Comp. Vertical Comp. Rocking Comp. 
Imperial Valley -6.17 -0.030 2.25 4.45 1.65 
San Fernando -57.00 0.370 4.78 4.25 11.20 

Taft 15.60 -0.043 4.40 2.30 1.30 
Tabas, Iran -108.50 0.376 7.40 0.90 0.88 

Chi Chi Taiwan 11.50 0.054 0.70 0.75 0.75 
Northridge 447.40 -1.220 0.78 10.25 1.10 

 

 
Fig. 10 Rocking Fourier amplitude spectrums for six earthquakes 

 

5.1. Verification  

To evaluate the Hong Non Lee improved method, the 
rotational components of the San Fernando earthquake is 
obtained using Hong Non Lee improved method [26]. 
Using this method, it is found that the peak values of 
rocking and torsional accelerations for shear wave velocity 
of 300 m/s are 0.3833 rad/s2, -0.2545 rad/s2, respectively. 

These values are calculated in [27] equal to -0.3725 rad/s2, 
-0.2480 rad/s2, respectively where the differences between 
these results are less than 3 percent. This difference is due 
to different ratio of 

xC/  where is considered constant in 

[27] and frequency dependent in this research. The time 
histories of rocking component for San Fernando 
earthquake which are generated by [27] and present work 
are shown in Fig. 11.  

 

(a) 

(b) 

Fig. 11 Rocking Component of San Fernando Earthquake, (a) present work, (b) [27] 
 
To evaluate the seismic response of dam-reservoir 

system under translational components of ground motion 
and study the finite element formulation for dynamic 
analysis of concrete gravity dam, some finite element 

analysis of system are done and the results are compared 
with analytical results or others works. For example the 
linear response of Pine Flat dam due to S69E component 
of Taft earthquake which is obtained in present work is 
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compared with result by [42]. These results are shown in Fig. 12 which have very good agreements. 

 
Fig. 12 The linear response of Pine Flat dam crest without reservoir due to S69E component of Taft earthquake, (a): present work, 

(b):[40,42] 

5.2. Modal analysis 

To study the behavior of dam subjected to translational 
and rotational components of earthquake, the modal 
analyses of dam-reservoir system with three levels of 
water have been done and the natural frequencies for two 
modes of them are listed in Table 4.  

 
Table 4 The natural frequencies of dam-reservoir system (Hz) 

Dam & 
Full res.  

Dam & 2/3 
Full res.  

Dam & 1/3 
Full res.  

Dam  System  

2.538  2.611  2.812  3.189  Mode 1  
3.226  3.512  3.906  6.630  Mode 2  
3.387  4.335  5.625  8.813  Mode 3  
4.082  4.459  6.634  11.591  Mode 4  
4.529  4.749  8.532  18.138  Mode 5 

5.3. Seismic fracture analysis of pine flat dam 

In this paper the fracture analysis of Pine Flat dam 
under the translational and rotational components of six 
earthquakes is conducted employing the numerical model 
described above. The time step used in the analysis is 
0.0025 s is employed to solve the equation of motion. The 
responses of dam due to two translational components 
named "2C" and due to two translational components and 
their rotational correlated component named "2C+R" are 
analyzed and the normalized response of dam is calculated 
using the ratio between maximum response of dam due to 
(2C+R) and (2C). 

Fig. 13 to 16 show the linear and nonlinear response of 
Pine Flat dam crest subjected to (2C) and (2C+R) of Taft 
earthquake. 

 

 
(a) 

 

 
(b) 

Fig. 13 The response of Pine Flat dam without reservoir due to (2C.) and (2C+R) of Taft earthquake, a) Linear response, b) Nonlinear 
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response 

 
(a) 

 
(b) 

Fig. 14 The response of Pine Flat dam with 1/3 full reservoir due to (2C.) and (2C+R) of Taft earthquake, a) Linear response, b) Nonlinear 
response 

 

 
(a) 

 
(b) 

Fig. 15 The response of Pine Flat dam with 2/3 full reservoir due to (2C.) and (2C+R) of Taft earthquake, a) Linear response, b) Nonlinear 
response 
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(a) 

 

 
(b) 

Fig. 16 The response of Pine Flat dam with full reservoir due to (2C.) and (2C+R) of Taft earthquake, a) Linear response, b) Nonlinear 
response 

 
Fig. 17 also shows the nonlinear response of empty 

dam subjected to Chi Chi Taiwan earthquake . As shown 
in this figure, responses to (2C) and (2C+R) excitations are 
very close. Other nonlinear results such as maximum 

horizontal and vertical displacements subjected to (2C) 
and (2C+R) and their normalized response for six 
mentioned earthquakes are presented in Table 5. 

 

 
Fig. 17 The nonlinear response of Pine Flat dam without reservoir due to (2C.) and (2C+R) of Chi Chi Taiwan earthquake 

 
Table 5 Nonlinear response of Pine Flat dam crest due to (2 Comp.) and (3 Comp.) of Ground motions 

Normalized 
Vertical 

displacement 

Maximum Vertical 
displacement(cm) 

Normalized 
Horizontal 

displacement 

Maximum Horizontal 
displacement(cm) Earthquake System 

2C+R 2C 2C+R 2C 
2.005 0.427 0.213 1.981 1.444 0.729 Imperial Valley 

Dam 
0.727 3.626 4.989 0.832 12.384 14.855 San Fernando 

0.617 0.755 1.222 0.761 3.197 4.201 Taft 

4.628 1.526 0.329 7.371 5.805 0.787 Tabas, Iran 
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1.086 0.719 0.662 1.015 2.247 2.214 Chi Chi Taiwan 
0.735 5.965 8.113 3.934 16.855 4.284 Northridge 
1.627 0.272 0.167 1.813 1.011 0.558 Imperial Valley 

Dam + 
1/3full 

Reservior 

1.008 5.180 5.140 1.168 18.650 15.970 San Fernando 

1.047 0.890 0.850 1.061 3.323 3.037 Taft 

5.105 1.630 0.319 9.430 7.046 0.747 Tabas, Iran 

0.981 0.723 0.737 0.945 2.380 2.517 Chi Chi Taiwan 

1.231 2.422 1.967 1.084 5.976 5.514 Northridge 

0.982 0.148 0.151 1.085 0.551 0.507 Imperial Valley 

Dam + 
2/3full 

Reservior 

 - 2.350 
Failed at 
t=3.472

 - 5.720 
Failed at 
t=3.472 San Fernando 

1.023 0.740 0.720 1.088 2.500 2.300 Taft 
3.732 1.310 0.351 7.575 6.840 0.903 Tabas, Iran 

1.070 0.746 0.697 1.037 3.104 2.992 Chi Chi Taiwan 

1.044 6.550 6.270 1.007 25.990 25.800 Northridge 

1.095 0.205 0.187 1.294 0.785 0.607 Imperial Valley 

Dam + 
Full 

Reservior 

1.276 2.939 2.304 1.093 3.455 3.161 San Fernando 
1.091 2.260 2.070 1.257 4.950 3.940 Taft 

34.390 12.200 0.355 11.990 8.528 0.711 Tabas, Iran 
1.155 0.931 0.805 1.017 3.145 3.092 Chi Chi Taiwan 
3.370 7.779 2.308 1.091 20.616 18.890 Northridge 

 
As shown in Figs. 13-17, the rotational component of 

ground motion can change both the quality and quantity of 
dam response and the maximum response of dam can 
increase or decrease when the rotational components of 
ground motion is considered. This effect is dependent on 
the natural frequency of dam and predominate frequency 
of rocking component. In addition, comparison of linear 
and nonlinear response of Pine Flat dam with different 
water level in reservoir are not same due to the post-
cracking behavior of concrete material and changing of the 
material elasticity modulus after cracking.  

As shown in Table 5, the maximum normalized 
response of horizontal and vertical displacements of dam 
crest for different level of water in reservoir under Tabas 
earthquake, while for minimum normalized response of 
displacements under other earthquakes there are not any 

regulation. In this table, the failure is occurred only due to 
translational components (2C) of San Fernando earthquake 
for dam with 2/3 full reservoir at time of t=3.472. In this 
case for (2C+R) analyses, when the rotational component 
is considered the failure will not occur and this 
phenomenon mean that the rotation component of ground 
motion decreases the response of dam. . 

In Fig. 18, the crack propagation of dam without 
reservoir due to (2C) and (2C+R) of Taft earthquake are 
compared schematically. As shown in this figure, the 
rotational components change the cracking pattern and the 
crack zone in dam body is more limited, while for dam 
with full reservoir due to (2C) and (2C+R) under Tabas 
earthquake, the rotational component of ground motion 
increases the dam cracking zone (Fig. (19)). 

 

 

(b)  

  

(a)  

Fig.18 The Crack propagation of Pine Flat dam without reservoir subjected to Taft earthquake, (a): due to (2C), (b): due to (2C+R) 
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(b)  

  

(a)  

Fig.19 The Crack propagation of Pine Flat dam with full reservoir subjected to Taft earthquake, (a): due to (2C), (b): due to (2C+R) 
 

6. Conclusions 

In this study, nonlinear seismic response of a concrete 
gravity dam subjected to two translational components 
(2C) and two translational and their rotational correlated 
components (2C+R) are investigated. Pine Flat concrete 
gravity dam is chosen for analyses and dam-reservoir 
interaction is modeled using finite element method and 
Lagrangian-Lagrangian approach. Nonlinear behavior of 
dam concrete is idealized using nonlinear fracture 
mechanics based on smeared crack approach and the 
following conclusions are made: 

1- The normalized response of dam is dependent on 
the peak rotational rate (PRR), frequency content of 
rotational components of ground motions, their power 
spectrum, and the natural frequency of dam-reservoir. 
Depend on the mentioned parameters, the rotation 
component of ground motion can increase or decrease the 
response of the dam. In this study the Northridge and 
Tabas earthquakes have a high PRR and also their 
rotational Fourier amplitude and power spectrum close to 
the dam natural frequency are higher than other 
earthquakes. Therefore these two earthquakes have more 
effects on the response of dam. 

2- The rotational effects on dam response can be 
neglected when the Fourier amplitudes of translational 
components of ground motion close to the dam natural 
frequency are greater than rotational Fourier amplitude. 

3- Depends on natural frequencies of dam-reservoir 
and rotational components of ground motion, the quality 
and quantity of dam response can be changed basically.  

4- Rotation component of earthquakes can decrease 
or increase the cracked zone of concrete gravity dams 
depends on frequency content of ground motion and natural 
frequency of dam-reservoir system. In addition, the 
rotational component of earthquake can change the 
beginning point of crack in dam and consequently cracked 
zone. 

5- The normalized response of dam crest in 
nonlinear analysis is different from those in linear ones. 
These differences in nonlinear analysis are due to the post-
cracking behavior of concrete material and changing of the 
material elasticity modulus after cracking.  

6-  The effect of rotational components on dam 
response can be changed basically when the water 
elevation is higher in comparison with lower water 
elevations. In this case, the quality and quantity of dam 
response are also changed considerably. 

The time histories of rocking components that are 
obtained in this study using improved approach have a 
good agreement with the other works. 
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